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Adducts of the general formula R;PO . BF; react with
BF; to give R;PO . BF; . BF; . NMR— and conductome-
tric studies show that both adducts are ionized in
nitrobenzene. lonization is promoted by increase in
donor strength of the PO-compound. Rapid inter-
molecular exchange of BF; is found at 25° with the
adducts of phosphoryl donors with the exception of
TMP and of HMPA-complex.

Introduction

PhPOF, is known to react with BCl; to give
PhPOCI; and BFs:.!! This work has now been exten-
ded by means of NMR and conductometric techni-
ques, to include phosphoryl compounds of various
donor properties, namely (with increasing donor
strength): POCl;, PhPOF,;, PhPOCL, Ph,POF, Ph.-
0OCl, (CH;0);PO( TMP), n—(CsH;0)PO (TBP), Ph;PO
(TPO), [(CH;):N J;PO(HMPA).

Experimental Section

PhPOF, and Ph,POF were prepared from the re-
spective chlorides with Na,SiFs2 Ph,POCl was ob-
tained by oxidation of Ph,PCl with Cl, followed by
solvolysis with SO,} The commercial products of
POCls, PhPOC];, TMP, TBP, HMPA were distilled
prior to use (x< 1077 ohm“1 cm~! at 25°). Ph;PO
was purified by recrystallization from absolute ben-
zene.

Nitrobenzene was purified chromatographically
(AL;O;),# dried over CaCl; and fractionally distilled
under dry N;. It was further purified by means of
molecular sieves (Linde A 4); b.p. 79.8°/9 mm, x =
3.10"® ohm-! c¢cm~!, water content: 9.107* mole/ 1.
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Boron(I1T) fluoride was used without any further
purification. The NMR-spectra were recorded with
a RS 2-spectrometer (Associated Electric Ind., En-
gland) at 60 Mc ('"H and “F) and at 25 Mc (*'P). For
'H-resonance (CH3)Si (TMS, 1%) and for “F-reso-
nance CCLF (10%) was used as internal standard
while the *P-resonance spectra were recorded with
85% H;PO, as external standard. The samples con-
taining different BFs-donor molar ratios were recor-
ded in the absence of a solvent.

Conductometric titrations of BF; with the donor
were carried out in nitrobenzene under dry N, at 25°.
Molar conductivities (An) are based on the concen-
tration of BF;, measured in mole BF: per 1000 ml
nitrobenzene.

Results

In the BF; systems of POCI;, PhPOF,, PhPOC),,
Ph,POF and Ph,POC! the chemical shift of the *'P-
signals is decreased by increase in BFs:-concentration
(Figure 1) while the F-signals of PhPOF, and Ph,POF
are shifted upfield (Figure 2) to the same extent as
the *'P-signals are shifted downfield (Table I).

In the systems TMP—BF;, TBP—BF;, HMPA—-BF;
(Table I) signals for the free donor and the complex
were detected separately. In the system TMP-BF;,
the 'H-signals of the complex are shifted downfield
(Bx) with respect to free TMP, while the 3'P-signal
undergoes a highfield shift. The *P-signals of the
three halogen free donors (TMP, TBP, HMPA) are
very broad unresolved multiplets.

In the system TBP-BF; only the *'P-signals are suf-
ficiently separated. Bp may be attributed to the com-
plex TBP . BFs. The signal Dy is shifted slightly down-
field with increasing BF; concentration owing to sol-
vent effects. Two lines of the signal Dy are lost in
the noise so that this signal appears as a quartet in-
stead of the expected hextet (CH; = A, —CH,-P =
0 = D). The chemical shift of the other 'H-signals
are nearly independent of the BF; concentration.

The 'H-spectra of the system HMPA—BF; show two
doublets, Ax for free HMPA and By for the complex
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Table I. Some NMR data for the BF;systems with PhPOF,, Ph,POF, TMP, TBP and HMPA
Donor X NMR N M *5 ] M 25 ) M 5 M o5 J
PhPOF, 0.0 ¥F 2 2 65.0 1100 PF
0.0 p 3 3 —11.4 1100 PF
0.75 ¥F 3 2 69.1 1127 PF 1 142
0.75 P 3 3 —15.3 1125 PF
Ph,POF 00 R 2 2 73.8 1010 PF
0.0 Ip 2 2 —39.6 1010 PF
1.11 YR 6 2 870 1050 PF 2 88.4 1080 PF 1 1352 1 143
TMP 0.0 'H 2 2 3.70 11 PH
0.0 Hp m m —2.59
0.42 ‘H 4 2 3.82 11 PH 2 421 11 PH
0.42 up m m 0.0
TBP 0.0 'H m 3 0.904 m 1.01 m 1.50 4 395 7.2 HHP
0.0 np m m 0.6
0.96 'H m 3 0.955 m 1.06 m 1,67 4 427 6.4 HHP
0.96 »p m m 0.6 m 6.56
HMPA 0.0 'H 2 2 2.51 104 PH
.0 up m m -23.0
0.33 'H 4 2 2.57 10.0 PH 2 271 114 PH
0.33 Ip m m -~23.6

X = mole ratio BF;/donor, N =

doublet etc.), & = chem. shift in ppm (Varian scale for 'H),

A, B, C, D..

HMPA . BFs. The signal By of the complex appears
downfield with respect to the 'H-signals of the free
HMPA.
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Figure 1. P chemical shift vs. mole ratio BF;: D in the
systems POCI—~BF; (1), PhPOF—~BF, (2), PhPOCI—BF; (3),
Ph,POF—BF; (4) and Ph,POCI-BF; (5).

The chemical shift of coordinated BF; found in the
range 140-150 ppm/CClsF is independent of the BFs
concentration but- is slightly altered by variation of
the donor.

The low solubility of PhsPO . BF; in inert solvents
made an investigation of this system by NMR impos-
sible.
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] = coupling constant
symbols for thc signals or group of lincs in thc spectrum.

total number of signal lines in the spectrum, M = multiplet-structure (1 = single peak, 2 =
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Figure 2. "F chemical shift vs. mole ratio BF;:D in the
systems Ph,POF—BF; (1) and PhPOF—BF; (2).
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Figure 3. Molar conductance vs. mole ratio Ph,POCI: BF, in
nitrobenzene cam = 0.317m (1), cpey = 0.296m (2), Cors =
0.174 m (3), cars = 0.0854 m (4).



The molar conductances in nitrobenzene reach a
maximum at a molar ratio of 0.5 mole donor per mole
BF; (Figure 3, 4, 5).
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Figure 4. Molar conductance vs. mole ratio D .BF; in nitro-
benzene at cem = 0.3.POCL—BF, (1), PhPOF—BF, (2),
PhPOCI,—BF; (3), Ph,POF—BF; (4) and Ph,POCI—BF, (5).
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Figure 5. Molar conductance vs. mole ratio D .BF; in nitro-
benzene at cgrs = 0.3. Ph,POCI-BF; (1), TBP—BF; (2) and
TMP—BF; (3).

The dependence of the molar conductance on
the BF; concentration in the system Ph;POCI-BF;
is shown in Figure 3. It can be seen that the max-
imum conductivity (at the mole ratio D:BF: = 0.5
is increased by increasing the BFs; concentration in
contrast to the behaviour expected for a weak elec-
trolyte. On the other hand, the conductance at
mole ratio 1:1 is increased by decreasing the BF;
concentration and thus shows the behaviour typical
of a weak electrolyfte.
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Figure 6. Molar conductance vs. mole ratio D .BF; in nitro-
benzene at csr; = 0.085. Ph,POCI-BF; (1), HMPA—BF,; (2)
and Ph)PO—BFJ (3)

The titrations for the POCli—, PhPOF,—,
PhPOCl;—, Ph,POF—, Ph,POCI- (Figure 4), TBP—,
TMP—, (Figure 5) BF: systems were all carried out
at the same BF,; concentration (0.300 mole BF:/1
nitrobenzene). The conductances at the maximum
depend on the nature of the donor. No maximum
is found in the system POCI—BF; (dotted line in
Figure 4), possibly owing to hydrolysis of POCl.
The BF;—Ph;PO system had to be measured at low
BF: concentration and showed the same type of
curve as Ph,POCI at the same concentration.

' Discussion

The NMR—spectra of the system Ph,POF-BF; and
PhPOF—BF; (Table 1) show multiplet structures cau-
sed by the coupling of phosphorus with fluorine. The
YF-signal of Ph,POF and PhPOF, shows a doublet,
the *P-signal of Ph,POF a doublet and that of PhPOF,
a triplet within the investigated composition range.
The ¥F and the ¥P chemical shift of the donor de-
pends strongly on the mole ratio BFs: D (Figure 1, 2).
This is evidence for the presence of donor-acceptor
compounds. According to IR-measurements adduct
formation in the system PhPOF~—BF; is known tc
occur through O-coordination,® and this is in accor-
dance with the NMR results, which exclude the for-
mation of [Ph,PO]*[BF,]- and [PhPOF]*[BF,]-,
for which *'P should give a single peak in the system
Ph;POF-BF; and doublet in the system PhPOF; . BF;
The absence of ionized units in the adduct Ph-
POF, .BF; is also seen from the results presented
in Figure 7.

The fluorine chemical shift of Ph,POF is increased
by addition of BFs. At 25° the system is saturated
with BF; at a mole ratio BF::D = 1.1:1. In the
range of excess BF; (between the molar ratios 1:1
and 1.1:1) a second doublet appears in the F-spec-

(5) V. Gutmann and E. Wychera, Mh. Chem. 96, 828 (1965).
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trum (88.4 ppm/CCLF), which is shifted upfield with
respect to the doublet of Ph,POF .BF; (87.0 ppm/
CCIsF). 1In this composition range a second F-signal
for coordinated BF; is found, namely at 135 ppm with
respect to¢ CCLF. This signal is shifted downfield
with respect to BF; in Ph,POF . BF; (142 ppm/CCI:F),
just as the YF-signal of [B;F7]~ occurs at lower field®
than that of [BF;]-, and must be attributed to a
species which contains more more than 1 mole BF;
per mole Ph;POF.
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Figure 7. Fluorine distribution of Froron/Fphosphorss vS. mole
ratio BF;. PhPOF,, expected for [PhPOF]*[BF;]~ (1), found
and calcd. for PhPOF,.BF; (2).

Such compounds have been described in systems
of the type R,CO-BF; which have been formula-
ted as:?

\/\/

F—B

~ \

R,CO F

The [B.F;]~— ion is known to loose one mole of
BF; easily® and likewise Ph,POF . BF; . BF; could not
be isolated.

In the YF-spectra (except in the POCI;—BF; system)
only the signal of coordinated BF; is present (140-
150 ppm/CCLiF, POCl:—BF; 135 ppm/CCLF).

The molar conductivities in nitrobenzene (Figure 4,
5, 6) at molar ratios of D:BF; = 0.5:1 (hos) and
D:BF; = 1:1 (\0) are increased by increasing strength
of the phosphoryl donor D indicating higher ioniza-
tion by increasing donor properties (Table 1I), but
POCIl; and HMPA do not obey this rule.

The Kpa values derived from 3P-NMR measure-
ments® for the reactions

PhPOCI, . BF,+D = PhPOCI,+ D . BF,
also increase with increasing values of DNsycis.

The ionization at mole ratios D:BF, = 1:0 may
be regarded as due io autoionization

2D.BE 2 BE* + [BE]- )

(6) J. ). Harris, Inorg. Chem. 5, 1627 (1966).
(7) R. J. Gillespie and J. S. Hartmann, Can. J. Chem. 46, 2147
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Table Il. Conductances in Phosphoryldonor-BF; systems of
different donor number® at ¢~0.3 mole BF,/liter

D DNisbeig Kbo.a s Ao
PhPOF, 16.4 0.2+ 0.05 0.011 0.0050
PhPOCI, 18.5 0.0 0.025 0.011

Ph,POF — 60 £ 5 0.110 0.040
Ph,POCI 224 100 =10 0.165 0.075
TMP 23.0 _— 0.300 0.110
TBP 23.7 — 0.250 0.095
Ph;PO ca. 33 —_— 0.890 —_

which is expected to be promoted by increasing donor
strength. The conductivity maximum in nitrobenzene
solution at a mole ratio D: BF; = 0.5 cannot be attri-
buted to an equilibrium such as

thl'i‘O .BF,+BF, = [Ph,PO . BF,]*+[BF,CI]" Q)
cl

since the maximum is also found in the system TMP—
BFs where such ionization is impossible. It may be
explained, however, by assuming the following equi-
libria
RJPO . BF1+BF3 =
(D

R;PO . BF; . BF; = [R,PO . BF,]*+[BF.]- (3)
(In (I111)

which involve the partial ionization of thc adduct (II)
found by NMR in the system Ph,POF—BF;.

The dependence of the molar conductance on the
concentration in the system Ph;POCI-BF; (Figure 3)
can now also be explained. The maximum at the
mole ratio D:BF; = 0.5 is increased by increasing
the concentration in contrast to the behaviour of a
weak electrolyte and this must be due to dissociation
of (I) into (I) and BF;, which is favoured by dilution.
The molar conductivities at molar ratios D:BF;>1:1
are increased at low concentrations as expected for a
weak electrolyte, such as (1).

In the BF; systems with POCl;, PhPOF,, PhPOCI,,
Ph,POF, and Ph,POCI the *P-signals experience a
downfield shift the more BF; is provided. This must
be attributed to a fast intermolecular exchange of
BF; as is known to occur in other D—BF; systems.”®?
On the other hand, separate 'H-signals from the com-
plex and free donor were detected in the systems
containing the stronger donors TMP and HMPA.
This shows that, in these systems, there is no inter-
molecular exchange of BF;.
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